Numerical simulation of flow through microchannels with designed roughness
نویسندگان
چکیده
A three-dimensional numerical simulation of flow through serpentine microchannels with designed roughness in form of obstructions placed along the channels walls is conducted here. CFD-ACE+ is used for the numerical simulations. The effect of the roughness height (surface roughness), geometry, Reynolds number on the friction factor is investigated. It is found that the friction factor increases in a nonlinear fashion with the increase in obstruction height. The friction factor is more for rectangular and triangular obstructions and it decreases as the obstruction geometry is changed to trapezoidal. It is observed that the obstruction geometry, i.e., aspect ratio plays an important role in prediction of friction factor in rough channels. It is also found that the pressure drop decreases with the increase in the roughness pitch. Hence, the roughness pitch is an important design parameter for microchannels.
منابع مشابه
A NUMERICAL STUDY OF SINGLE-PHASE FORCED CONVECTIVE HEAT TRANSFER WITH FLOW FRICTION IN MICROCHANNELS (RESEARCH NOTE)
Three-dimensional simulations of the single-phase laminar flow and forced convective heat transfer of water in microchannels with small rectangular sections having specific hydraulic diameters and distinct geometric configurations were investigated numerically. The numerical results indicated that the laminar heat transfer was to be dependent upon the aspect ratio and the ratio of the hydraulic...
متن کاملEffects of Rarefaction and Compressibility on Fluid Flow at Slip Flow Regime by Direct Simulation of Roughness
A two dimensional numerical simulation has been performed for incompressible and compressible fluid flow through microchannels in slip flow regime. The Navier-Stokes equations have been solved in conjunction with Maxwell slip conditions for modeling flow field associated with slip flow regime. The wall roughness is simulated with triangular microelements distributed on wall surfaces to study th...
متن کاملInvestigation of electrokinetic mixing in 3D non-homogenous microchannels
A numerical study of 3D electrokinetic flows through micromixers was performed. The micromixers considered here consisted of heterogeneous rectangular microchannels with prescribed patterns of zeta-potential at their walls. Numerical simulation of electroosmotic flows within heterogeneous channels requires solution of the Navier-Stokes, Ernest-Plank and species concentration equations. It is kn...
متن کاملSimulation of Roughness Shape and Distribution Effects on Rarefied and Compressible Flows at Slip Flow Regime
A numerical simulation of micro Poiseuille flow has performed for rarefied and compressible flow at slip flow regimes. The wall roughness is simulated in two cases with triangular microelements and random micro peaks distributed on wall surfaces to study the effects of roughness shape and distribution on flow field. Two values of Mach and Knudsen numbers have used to investigate the effects of ...
متن کاملNumerical Study of Non-Newtonian Flow Through Rectangular Microchannels
A numerical investigation was carried out to solve the flow dimensionless partial differential equations through rectangular microchannels. A purely viscous power law <span style="font-size: 10pt; colo...
متن کامل